Skip to content

    FaceAdapter/Face-Adapter

    Repository files navigation

    Face Adapter for Pre-Trained Diffusion Models with Fine-Grained ID and Attribute Control

    arXiv GitHub

    Introduction

    Face-Adapter is an efficient and effective face editing adapter for pre-trained diffusion models, specifically targeting face reenactment and swapping tasks.

    Release

    • [2024/5/25] ?? We release the gradio demo.
    • [2024/5/24] ?? We release the code and models.

    Installation

    # Torch >= 2.0 recommended for acceleration without xformers
    pip install accelerate diffusers==0.26.0 insightface onnxruntime
    
    

    Download Models

    You can download models of FaceAdapter directly from here or download using python script:

    # Download all files 
    from huggingface_hub import snapshot_download
    snapshot_download(repo_id="FaceAdapter/FaceAdapter", local_dir="./checkpoints")
    
    # If you want to download one specific file
    from huggingface_hub import hf_hub_download
    hf_hub_download(repo_id="FaceAdapter/FaceAdapter", filename="controlnet/config.json", local_dir="./checkpoints")

    To run the demo, you should also download the pre-trained SD models below:

    ? Quick Inference

    SD_1.5

    python infer.py 

    You can adjust the cropping size with the --crop_ratio (default:0.81)parameter. But be careful not to set the crop range too large, as this can decrease the quality of the generated images due to the limit of the training data size.

    ?? FaceAdapter can be seamlessly plugged into community models:

    python infer.py --base_model "frankjoshua/toonyou_beta6"

    Disclaimer

    This project strives to positively impact the domain of AI-driven image generation. Users are granted the freedom to create images using this tool, but they are expected to comply with local laws and utilize it in a responsible manner. The developers do not assume any responsibility for potential misuse by users.

    Citation

    If you find Face-Adapter useful for your research and applications, please cite using this BibTeX:

    @article{han2024face,
      title={Face Adapter for Pre-Trained Diffusion Models with Fine-Grained ID and Attribute Control},
      author={Han, Yue and Zhu, Junwei and He, Keke and Chen, Xu and Ge, Yanhao and Li, Wei and Li, Xiangtai and Zhang, Jiangning and Wang, Chengjie and Liu, Yong},
      journal={arXiv preprint arXiv:2405.12970},
      year={2024}
    }

    About

    No description, website, or topics provided.

    Resources

    Stars

    Watchers

    Forks

    Releases

    No releases published

    Packages

    No packages published

    Languages

    主站蜘蛛池模板: 日韩一区二区免费视频| 色窝窝免费一区二区三区 | 日韩精品电影一区亚洲| 日韩高清国产一区在线| 亚洲丰满熟女一区二区哦| 国产色精品vr一区区三区| 国产乱码精品一区二区三区四川人| 精品一区二区三区无码免费直播| 99精品国产一区二区三区| 偷拍激情视频一区二区三区| 国产伦精品一区二区三区无广告| 精品无人区一区二区三区在线| 国产一区视频在线免费观看| 免费一本色道久久一区| 日本在线不卡一区| 欧美亚洲精品一区二区| 久久久国产精品亚洲一区| 日本一区午夜艳熟免费| 精品亚洲一区二区三区在线观看 | 国产一区二区视频免费| 精品一区二区三区四区在线| 国产一区二区三区不卡在线看 | 高清精品一区二区三区一区| 无码精品一区二区三区免费视频| 久久精品国产一区二区三区日韩| 亚洲中文字幕无码一区| 日韩免费一区二区三区在线播放| 日韩一区二区三区无码影院| 精品一区精品二区制服| 国产伦精品一区二区三区免费下载 | 精品人妻中文av一区二区三区| 日韩精品成人一区二区三区| 一区二区三区精品| 中文字幕日韩一区二区不卡| 无码精品人妻一区二区三区免费看 | 久久精品一区二区| 久久久av波多野一区二区| 无码人妻少妇色欲AV一区二区 | 国产一区二区免费在线| 亚洲性日韩精品一区二区三区| 国产在线不卡一区二区三区|