Skip to content

    FaceAdapter/Face-Adapter

    Repository files navigation

    Face Adapter for Pre-Trained Diffusion Models with Fine-Grained ID and Attribute Control

    arXiv GitHub

    Introduction

    Face-Adapter is an efficient and effective face editing adapter for pre-trained diffusion models, specifically targeting face reenactment and swapping tasks.

    Release

    • [2024/5/25] ?? We release the gradio demo.
    • [2024/5/24] ?? We release the code and models.

    Installation

    # Torch >= 2.0 recommended for acceleration without xformers
    pip install accelerate diffusers==0.26.0 insightface onnxruntime
    
    

    Download Models

    You can download models of FaceAdapter directly from here or download using python script:

    # Download all files 
    from huggingface_hub import snapshot_download
    snapshot_download(repo_id="FaceAdapter/FaceAdapter", local_dir="./checkpoints")
    
    # If you want to download one specific file
    from huggingface_hub import hf_hub_download
    hf_hub_download(repo_id="FaceAdapter/FaceAdapter", filename="controlnet/config.json", local_dir="./checkpoints")

    To run the demo, you should also download the pre-trained SD models below:

    ? Quick Inference

    SD_1.5

    python infer.py 

    You can adjust the cropping size with the --crop_ratio (default:0.81)parameter. But be careful not to set the crop range too large, as this can decrease the quality of the generated images due to the limit of the training data size.

    ?? FaceAdapter can be seamlessly plugged into community models:

    python infer.py --base_model "frankjoshua/toonyou_beta6"

    Disclaimer

    This project strives to positively impact the domain of AI-driven image generation. Users are granted the freedom to create images using this tool, but they are expected to comply with local laws and utilize it in a responsible manner. The developers do not assume any responsibility for potential misuse by users.

    Citation

    If you find Face-Adapter useful for your research and applications, please cite using this BibTeX:

    @article{han2024face,
      title={Face Adapter for Pre-Trained Diffusion Models with Fine-Grained ID and Attribute Control},
      author={Han, Yue and Zhu, Junwei and He, Keke and Chen, Xu and Ge, Yanhao and Li, Wei and Li, Xiangtai and Zhang, Jiangning and Wang, Chengjie and Liu, Yong},
      journal={arXiv preprint arXiv:2405.12970},
      year={2024}
    }

    About

    No description, website, or topics provided.

    Resources

    Stars

    Watchers

    Forks

    Releases

    No releases published

    Packages

    No packages published

    Contributors 2

    •  
    •  

    Languages

    主站蜘蛛池模板: 中文字幕人妻无码一区二区三区| 在线精品亚洲一区二区| 亚洲AV日韩AV一区二区三曲| 无码精品蜜桃一区二区三区WW| 无码av免费一区二区三区试看| 一级毛片完整版免费播放一区| 亚洲熟女乱色一区二区三区| 国产高清在线精品一区小说| 日本精品一区二区在线播放 | av无码人妻一区二区三区牛牛 | 国产视频一区二区| AV鲁丝一区鲁丝二区鲁丝三区| 国产午夜毛片一区二区三区 | 人体内射精一区二区三区| 国产福利电影一区二区三区| 国产日韩精品一区二区在线观看| 精品欧美一区二区在线观看| 中文字幕av日韩精品一区二区| 91在线一区二区| 亚洲综合av一区二区三区不卡| 久久精品午夜一区二区福利| 亚洲国产精品综合一区在线| 国产91久久精品一区二区| 精品无码AV一区二区三区不卡| 久久精品黄AA片一区二区三区| 无码人妻久久一区二区三区| 少妇激情一区二区三区视频| 亚洲一区二区三区在线| 国产福利一区二区三区视频在线| 精品无码国产一区二区三区AV| 亚洲一区二区三区无码国产| 日韩精品人妻一区二区三区四区| 国产SUV精品一区二区四| 国内精自品线一区91| 极品少妇伦理一区二区| 国产99精品一区二区三区免费 | 一区免费在线观看| 久久精品国产一区二区| 日本成人一区二区| 亚洲中文字幕一区精品自拍 | 国产色情一区二区三区在线播放 |