亚洲国产爱久久全部精品_日韩有码在线播放_国产欧美在线观看_中文字幕不卡在线观看

學(xué)術(shù)活動(dòng)
06
2025-11
[ 大師講壇 ]
【大師講壇】第270期:石墨烯與層狀材料在光子學(xué)與光電子學(xué)中的應(yīng)用
石墨烯與層狀材料在光子學(xué)與光電子學(xué)領(lǐng)域展現(xiàn)出巨大潛力。在這些領(lǐng)域中,它們的光學(xué)與電學(xué)特性得以充分結(jié)合,并且石墨烯無(wú)帶隙的特點(diǎn)亦可轉(zhuǎn)化為優(yōu)勢(shì)。石墨烯中狄拉克電子的線性色散關(guān)系,使其能夠?qū)崿F(xiàn)超寬譜帶的可調(diào)諧性,以及通過(guò)柵壓調(diào)控、在超寬帶寬內(nèi)實(shí)現(xiàn)三次諧波增強(qiáng),這為光通信與信號(hào)處理領(lǐng)域所需的電可調(diào)寬帶頻率轉(zhuǎn)換器開(kāi)辟了道路。由于泡利阻塞效應(yīng),石墨烯中可觀察到可飽和吸收現(xiàn)象,該特性可被用于實(shí)現(xiàn)多種超快與寬帶激光器的鎖模運(yùn)作。石墨烯集成光子學(xué)為下一代數(shù)據(jù)通信與電信中所需的調(diào)制器、探測(cè)器和開(kāi)關(guān)的晶圓級(jí)制造提供了一個(gè)平臺(tái)。這些功能可通過(guò)將石墨烯層置于作為無(wú)源光波導(dǎo)的光波導(dǎo)頂端來(lái)實(shí)現(xiàn),從而簡(jiǎn)化現(xiàn)有技術(shù)。基于多種原子晶體的異質(zhì)結(jié)構(gòu),其性質(zhì)既不同于其單一組成成分,也不同于其三維體材料。將這些晶體以堆疊方式組合,可用于設(shè)計(jì)此類異質(zhì)結(jié)構(gòu)的功能,并應(yīng)用于新型發(fā)光器件中,例如單光子發(fā)射器和可調(diào)諧發(fā)光二極管。 Graphene and layered materials have great potential in photonics and optoelectronics, where the combination of their optical and electronic properties can be fully exploited, and the absence of a bandgap in graphene can be beneficial. The linear dispersion of the Dirac electrons in graphene enables ultra-wide-band tunability as well as gate controllable third-harmonic enhancement over an ultra-broad bandwidth, paving the way for electrically tuneable broadband frequency converters for optical communications and signal processing. Saturable absorption is observed as a consequence of Pauli blocking and can be exploited for mode-locking of a variety of ultrafast and broadband lasers. Graphene integrated photonics is a platform for wafer scale manufacturing of modulators, detectors and switches for next generation datacom and telecom. These functions can be achieved with graphene layers placed on top of optical waveguides, acting as passive light-guides, thus simplifying the current technology. Heterostructures based on layers of atomic crystals have properties different from those of their individual constituents and of their three dimensional counterparts. The combinations of such crystals in stacks can be used to design the functionalities of such heterostructures, that can be exploited in novel light emitting devices, such as single photon emitters, and tuneable light emitting diodes.
Andrea Ferrari
英國(guó)皇家工程院院士
30
2025-10
[ 大師講壇 ]
【大師講壇】第269期:CryoSeek(酷尋)——以結(jié)構(gòu)為先導(dǎo)的生物學(xué)發(fā)現(xiàn)新范式
糖質(zhì),又稱為碳水化合物,是地球上含量最為豐富的生物大分子。盡管其生理功能至關(guān)重要,糖質(zhì)的結(jié)構(gòu)生物學(xué)研究卻顯著滯后于蛋白質(zhì)與核酸。前期對(duì)于人源葡萄糖轉(zhuǎn)運(yùn)蛋白 GLUT3 與 D-葡萄糖的1.5 ?分辨率晶體結(jié)構(gòu)清晰表明,該轉(zhuǎn)運(yùn)體能夠識(shí)別α與β兩種變旋異構(gòu)體。這一發(fā)現(xiàn)凸顯了高分辨率結(jié)構(gòu)在闡明糖質(zhì)分子的立體化學(xué)方面的重要作用。雖然冷凍電鏡已能夠解析膜蛋白胞外修飾的糖鏈結(jié)構(gòu),但通常僅限于修飾位點(diǎn)附近的少數(shù)糖殘基,且難以獲得高分辨率結(jié)構(gòu)。近年來(lái),我們一直致力于獲得完整糖鏈的高分辨率結(jié)構(gòu),但進(jìn)展有限。通過(guò)建立名為“CryoSeek”的新范式,我們最近成功解析了多種具有高階結(jié)構(gòu)組裝特征的糖質(zhì)分子的高分辨率結(jié)構(gòu)。 Carbohydrates are the most abundant biomolecules on Earth. Despite their physiological importance, the structural biology of glycans has significantly lagged behind that of proteins and nucleic acids. The crystal structure of the human glucose transporter GLUT3 bound to D-glucose at 1.5 ? resolution clearly demonstrates that the transporter can recognize both α- and β-anomers. This finding underscores the power of high-resolution structures in elucidating the stereochemistry of sugars. While cryo-EM has enabled the structural resolution of glycan chains that modify the extracellular surface of membrane proteins, it has largely been limited to a small number of sugar residues near the modification site and at moderate resolutions. We have been striving to solve high-resolution structures of full glycan chains with little success until recently. By establishing a new paradigm called CryoSeek, we have successfully resolved the high-resolution structures of numerous glycans with higher-order structural assemblies.
顏寧
中國(guó)科學(xué)院院士,美國(guó)國(guó)家科學(xué)院外籍院士
24
2025-10
[ 大師講壇 ]
【大師講壇】第267期:從超分子聚合物到功能材料及手性系統(tǒng)
自聚合物發(fā)現(xiàn)以來(lái),科學(xué)家對(duì)其結(jié)構(gòu)始終存在爭(zhēng)論。在Hermann Staudinger提出大分子概念前,學(xué)界普遍認(rèn)為聚合物源于小顆粒或分子的膠體聚集。自1920年起,聚合物和大分子被認(rèn)為是通過(guò)共價(jià)鍵將單體在二維或三維空間連接構(gòu)成的材料。盡管大分子鏈間超分子相互作用的重要性不言而喻,但當(dāng)時(shí)難以設(shè)想基于小分子相互作用可構(gòu)建聚合物材料。超分子化學(xué)的突破性進(jìn)展表明,通過(guò)強(qiáng)方向性次級(jí)相互作用可實(shí)現(xiàn)小分子構(gòu)建聚合物材料——超分子聚合物領(lǐng)域由此誕生。通過(guò)控制分子片段間的超分子相互作用,設(shè)計(jì)具有響應(yīng)性與動(dòng)態(tài)功能的新型功能材料變得更為容易。其中,對(duì)分子時(shí)空位置的控制是獲得目標(biāo)功能的關(guān)鍵。本次講座將探討手性在時(shí)空維度中的典型案例及涌現(xiàn)機(jī)制,同時(shí)聚焦非共價(jià)合成中的分子相互作用,探討其在自旋過(guò)濾、生物材料及OLED等領(lǐng)域的應(yīng)用前景。 Since the discovery of the first polymers, scientists have debated their structures. Before Hermann Staudinger published the brilliant concept of macromolecules, it was generally assumed that the properties of polymers were based on the colloidal aggregation of small particles or molecules. Since 1920, polymers and macromolecules have been synonymous with each other; i.e. materials made by means of many covalent bonds that connect monomers in 2 or 3 dimensions. Although supramolecular interactions between macromolecular chains are clearly important, e.g. in nylons, it was unthinkable to imagine polymeric materials based on the interaction of small molecules. Breakthroughs in supramolecular chemistry have shown that polymer materials can be made by small molecules using strong directional secondary interactions; the field of supramolecular polymers was born. In a sense, we have come full circle [1]. By controlling the supramolecular interactions between molecular fragments, it became easier to design systems materials with unconventional responsive behavior and dynamic functionalities. In all cases, control over the position of the molecules in time and space is essential to achieve the required functionality. In our group we focus on the emergence of homochirality in time and space and some examples of this challenge will be discussed in the lecture. We use this to design supramolecular materials and chiral systems with highly ordered morphologies that change their properties on the action of light, pressure, temperature, or the addition of chemicals. On the other hand, applications in spin filtering, biomaterials and OLEDs will be discussed with a continues focus on the molecular interactions using non-covalent synthesis [2].
E.W. “Bert” Meijer
美國(guó)國(guó)家科學(xué)院外籍院士
24
2025-10
[ 大師講壇 ]
【大師講壇】第268期:基因打靶的誕生&ESCRT通路在HIV出芽及細(xì)胞生物學(xué)中的作用
基因打靶(gene targeting)的誕生,標(biāo)志著分子遺傳學(xué)從描述性研究進(jìn)入可定向改造基因功能的時(shí)代。上世紀(jì)八十年代,馬里奧·卡佩奇教授通過(guò)在哺乳動(dòng)物胚胎干細(xì)胞中實(shí)現(xiàn)同源重組,首次建立了在基因組特定位點(diǎn)進(jìn)行精準(zhǔn)修飾的技術(shù)。這一突破使科學(xué)家能夠“敲除”或“敲入”特定基因,從而系統(tǒng)地研究其在發(fā)育、生理與疾病中的功能。該方法孕育了“敲除小鼠”模型,為人類遺傳病、腫瘤和神經(jīng)系統(tǒng)疾病研究奠定了基礎(chǔ),并推動(dòng)了現(xiàn)代基因治療與精準(zhǔn)醫(yī)學(xué)的發(fā)展。本報(bào)告將回顧基因打靶技術(shù)從概念到實(shí)現(xiàn)的科學(xué)歷程,探討其對(duì)生命科學(xué)與醫(yī)學(xué)的深遠(yuǎn)影響。 Gene targeting marked the transition of molecular genetics from largely descriptive studies to an era of targeted engineering of gene function. In the 1980s, Professor Mario R. Capecchi achieved homologous recombination in mammalian embryonic stem cells, thereby establishing the first technology for precise modification at defined genomic loci. This breakthrough enabled scientists to knock out or knock in specific genes and to systematically interrogate their roles in development, physiology, and disease. The method gave rise to knockout mouse models, laid the foundation for research on human genetic disorders, cancer, and neurological diseases, and propelled the development of modern gene therapy and precision medicine. This lecture will retrace the scientific journey from concept to realization and explore the profound impact of gene targeting on the life sciences and medicine. 為了傳播感染,人類免疫缺陷病毒(HIV)需形成具有包膜的球形顆粒,并通過(guò)質(zhì)膜出芽釋放。我們研究發(fā)現(xiàn),HIV-1及其他逆轉(zhuǎn)錄病毒通過(guò)劫持宿主的內(nèi)體分選轉(zhuǎn)運(yùn)(ESCRT)通路的活性實(shí)現(xiàn)出芽。我們與合作團(tuán)隊(duì)進(jìn)一步研究了ESCRT通路在HIV出芽、細(xì)胞分裂及其他關(guān)鍵細(xì)胞功能中的作用,并解析了十余種不同ESCRT因子及復(fù)合體的三維結(jié)構(gòu)。這些研究揭示了ESCRT組分如何組裝、相互作用并識(shí)別病毒及泛素化蛋白,ESCRT-III亞基如何通過(guò)構(gòu)象變化形成能夠重塑細(xì)胞膜的纖絲狀結(jié)構(gòu),以及ATP水解所釋放的能量如何驅(qū)動(dòng)膜重塑。 To spread infections, the human immunodeficiency virus (HIV) must form enveloped spherical particles that bud through the plasma membrane. We have demonstrated that HIV-1 and other retroviruses bud from cells by usurping the activity of the host Endosomal Sorting Pathway Required for Transport (ESCRT) pathway. We and our collaborators have also explored the functions of the ESCRT pathway in HIV budding, cell division and other cellular functions, and determined the three-dimensional structures of more than a dozen different ESCRT factors and complexes. This work has helped reveal how ESCRT components assemble, interact, and recognize viral and ubiquitylated proteins, how ESCRT-III subunits can change conformations and form filaments that remodel membranes, and how the energy of ATP hydrolysis is used to power membrane remodeling.
Mario R. Capecchi
美國(guó)國(guó)家科學(xué)院院士 2007年諾貝爾生理學(xué)或醫(yī)學(xué)獎(jiǎng)獲得者
亚洲国产爱久久全部精品_日韩有码在线播放_国产欧美在线观看_中文字幕不卡在线观看

    
    

    9000px;">

      
      

      精品无码三级在线观看视频| 精品久久一二三区| 成人91在线观看| 欧美中文字幕一区二区三区 | 欧美成人性福生活免费看| 国产日韩欧美在线一区| 亚洲一二三四区| 成人免费毛片嘿嘿连载视频| 欧美二区三区的天堂| 国产精品青草久久| 美女视频一区二区三区| 99免费精品在线| 久久亚洲免费视频| 免费视频一区二区| 欧美性猛交一区二区三区精品 | 在线观看一区二区精品视频| 亚洲天堂av一区| 日韩一二三四区| 精品国偷自产国产一区| 亚洲精品国产视频| 国产精品一区二区男女羞羞无遮挡| 91久久精品网| 国产精品无圣光一区二区| 老色鬼精品视频在线观看播放| 99久久99久久精品免费观看| 欧美成人性战久久| 五月综合激情日本mⅴ| 91亚洲精品一区二区乱码| 国产午夜亚洲精品羞羞网站| 久久er精品视频| 欧美日韩一区二区三区视频| 最新欧美精品一区二区三区| 国产精一品亚洲二区在线视频| 日韩欧美一区二区三区在线| 三级精品在线观看| 亚洲午夜在线电影| 亚洲欧美日韩国产综合在线| 亚洲国产日韩av| 国产中文字幕精品| 91精品福利在线| 成人一级片网址| 欧美视频你懂的| 亚洲va韩国va欧美va| 欧美日韩国产一级| 免费美女久久99| 欧美精品一区二区三区蜜桃视频| 人人狠狠综合久久亚洲| 欧美成人伊人久久综合网| 免费看黄色91| 久久综合九色综合欧美就去吻 | 欧美日韩亚洲综合| 亚洲二区视频在线| 在线电影院国产精品| 免费一区二区视频| 欧美成人乱码一区二区三区| 久久国产日韩欧美精品| 精品电影一区二区| 国产成人在线视频免费播放| 中文字幕不卡的av| 色综合久久久久综合体桃花网| 玉足女爽爽91| 欧美一区二区三区四区高清| 国产精品自拍一区| 亚洲欧美电影院| 在线播放中文一区| 国产精品中文字幕一区二区三区| 欧美激情在线免费观看| 色婷婷国产精品综合在线观看| 亚洲国产日韩一级| 欧美精品一区二区不卡| 成人国产免费视频| 亚洲成人动漫精品| 精品日韩一区二区三区免费视频| 丰满岳乱妇一区二区三区| 亚洲另类在线制服丝袜| 67194成人在线观看| 国产一区二区三区美女| 一区二区三区成人在线视频| 日韩欧美自拍偷拍| 91在线播放网址| 蜜臀国产一区二区三区在线播放| 欧美极品aⅴ影院| 天使萌一区二区三区免费观看| 久久精品国产亚洲aⅴ| 91精品国产综合久久福利软件| 亚洲电影在线免费观看| 欧美日韩国产123区| 性做久久久久久免费观看| www国产成人免费观看视频 深夜成人网| 另类欧美日韩国产在线| 中文字幕中文在线不卡住| 日韩一级片在线播放| 91视频xxxx| 国产精品资源在线观看| 婷婷国产在线综合| 国产精品家庭影院| 精品国偷自产国产一区| 欧美日韩国产成人在线91| a4yy欧美一区二区三区| 国产专区欧美精品| 日韩福利电影在线| 亚洲一区二区中文在线| 国产精品国产三级国产aⅴ原创| 精品欧美一区二区三区精品久久| 精品视频在线免费看| 色综合久久天天| 99久久久久免费精品国产| 国产精品一二三在| 久久99久久久欧美国产| 日韩制服丝袜先锋影音| 亚洲一区电影777| 亚洲欧美偷拍卡通变态| 久久精品一区二区三区av| 欧美一区二区三区公司| 欧美美女bb生活片| 欧美色倩网站大全免费| 色噜噜久久综合| www.久久精品| 国产成人啪午夜精品网站男同| 精品一区二区影视| 免费成人结看片| 蜜桃av噜噜一区二区三区小说| 亚洲一二三专区| 亚洲美女一区二区三区| 国产精品乱人伦| 国产精品你懂的| 欧美激情资源网| 国产精品天美传媒沈樵| 国产精品国产精品国产专区不片| 中文子幕无线码一区tr| 中文字幕不卡一区| 国产精品国产三级国产普通话99| 国产亚洲综合性久久久影院| 国产婷婷一区二区| 国产日韩欧美激情| 国产精品卡一卡二卡三| 蜜乳av一区二区三区| 国产精品久久久久婷婷二区次| 日韩欧美自拍偷拍| 欧美性猛交一区二区三区精品| 成人午夜短视频| 九九国产精品视频| 99国产精品久久久久久久久久| 色婷婷av一区二区| 欧美日本高清视频在线观看| 91精品国产综合久久福利| 欧美成人性战久久| 国产精品视频一二三区| 亚洲欧美日韩人成在线播放| 亚洲国产精品久久久久秋霞影院| 日韩精品一二三区| 国产在线精品不卡| 91伊人久久大香线蕉| 欧美日韩aaa| 国产日韩成人精品| 一区二区三区**美女毛片| 日韩国产在线观看一区| 九色综合国产一区二区三区| 成人性视频网站| 欧美日韩在线播放一区| 国产日韩欧美精品一区| 亚洲二区在线观看| 国产乱码精品一区二区三| 91蜜桃视频在线| 欧美电视剧免费观看| 亚洲欧美一区二区视频| 日本在线不卡一区| 不卡视频在线看| 日韩女优电影在线观看| 自拍偷拍亚洲激情| 狠狠色丁香久久婷婷综| 在线中文字幕一区| 久久―日本道色综合久久| 一区二区三区免费网站| 国产一区二区三区在线观看精品| 色婷婷激情久久| 国产精品视频免费看| 免费成人在线影院| www精品美女久久久tv| 中文字幕中文字幕在线一区| 日本少妇一区二区| 色欧美乱欧美15图片| 久久青草欧美一区二区三区| 婷婷一区二区三区| 色94色欧美sute亚洲线路一久| 久久久亚洲精华液精华液精华液 | 一本到一区二区三区| 精品国产在天天线2019| 亚洲午夜久久久久久久久电影院| 国产福利精品一区| 欧美sm美女调教| 日本va欧美va瓶| 欧美日韩视频在线一区二区| 中文字幕在线观看不卡| 国产福利一区在线| 久久成人久久鬼色| 裸体一区二区三区| 91免费观看视频在线| 2020国产精品自拍| 一区二区免费在线播放|