亚洲国产爱久久全部精品_日韩有码在线播放_国产欧美在线观看_中文字幕不卡在线观看


Continual Diffusion: Continual Customization of Text-to-Image Diffusion with C-LoRA


James Seale Smith1,2, Yen-Chang Hsu1, Lingyu Zhang1, Ting Hua1

Zsolt Kira2, Yilin Shen1, Hongxia Jin1


1Samsung Research America, 2Georgia Institute of Technology

Transactions on Machine Learning Research (TMLR) 2024


paper

A use case of our work - a mobile app sequentially learns new customized concepts. At a later time, the user can generate photos of prior learned concepts. The user should be able to generate photos with multiple concepts together, thus ruling out methods such as per-concept adapters or single-image conditioned diffusion. Furthermore, the concepts are fine-grained, and simply learning new tokens or words is not effective.

Abstract


Recent works demonstrate a remarkable ability to customize text-to-image diffusion models while only providing a few example images. What happens if you try to customize such models using multiple, fine-grained concepts in a sequential (i.e., continual) manner? In our work, we show that recent state-of-the-art customization of text-to-image models suffer from catastrophic forgetting when new concepts arrive sequentially. Specifically, when adding a new concept, the ability to generate high quality images of past, similar concepts degrade. To circumvent this forgetting, we propose a new method, C-LoRA, composed of a continually self-regularized low-rank adaptation in cross attention layers of the popular Stable Diffusion model. Furthermore, we use customization prompts which do not include the word of the customized object (i.e., person for a human face dataset) and are initialized as completely random embeddings. Importantly, our method induces only marginal additional parameter costs and requires no storage of user data for replay. We show that C-LoRA not only outperforms several baselines for our proposed setting of text-to-image continual customization, which we refer to as Continual Diffusion, but that we achieve a new state-of-the-art in the well-established rehearsal-free continual learning setting for image classification. The high achieving performance of C-LoRA in two separate domains positions it as a compelling solution for a wide range of applications, and we believe it has significant potential for practical impact.


Method


Our method, C-LoRA, updates the key-value (K-V) projection in U-Net cross-attention modules of Stable Diffusion using a continual, self-regulating low-rank weight adaptation. The past LoRA weight deltas are used to regulate the new LoRA weight deltas by guiding which parameters are most available to be updated. Unlike prior work, we initialize custom tokens as random features and remove the concept name (e.g., person) from the prompt.

Results: Faces


Qualitative results of continual customization using the Celeb-A HQ dataset. Results are shown for three concepts from the learning sequence sampled after training ten concepts sequentially.


Multi-concept results after training on 10 sequential tasks using Celeb-A HQ. Using standard quadrant numbering (I is upper right, II is upper left, III is lower left, IV is lower right), we label which target data belongs in which generated image by directly annotating the target data images.

Results: Landmarks


Qualitative results of continual customization using waterfalls from the Google Landmarks dataset. Results are shown for three concepts from the learning sequence sampled after training ten concepts sequentially.

BibTeX

                @article{smith2024continualdiffusion,
                  title={Continual Diffusion: Continual Customization of Text-to-Image Diffusion with C-LoRA},
                  author={Smith, James Seale and Hsu, Yen-Chang and Zhang, Lingyu and Hua, Ting and Kira, Zsolt and Shen, Yilin and Jin, Hongxia},
                  journal={Transactions on Machine Learning Research},
                  issn={2835-8856},
                  year={2024}
                }
              

亚洲国产爱久久全部精品_日韩有码在线播放_国产欧美在线观看_中文字幕不卡在线观看

    
    

    9000px;">

      
      

      蜜臀av性久久久久蜜臀aⅴ流畅| 亚洲亚洲人成综合网络| 亚洲日本乱码在线观看| 91理论电影在线观看| 亚洲品质自拍视频| 欧美精品日韩精品| 国产一区二区福利视频| 国产精品麻豆欧美日韩ww| 91国偷自产一区二区开放时间 | 国产偷国产偷精品高清尤物| 97精品视频在线观看自产线路二 | 亚洲综合在线观看视频| 9191国产精品| 成人久久视频在线观看| 视频一区欧美日韩| 国产精品久久久久久久久免费桃花 | 日韩天堂在线观看| 9l国产精品久久久久麻豆| 同产精品九九九| 中文字幕免费一区| 在线综合+亚洲+欧美中文字幕| 国内精品不卡在线| 婷婷综合另类小说色区| 国产精品欧美一级免费| 欧美成人激情免费网| 99国产精品一区| 久久精品国产精品青草| 亚洲精品高清视频在线观看| 久久久亚洲高清| 欧美一区午夜精品| 欧美性videosxxxxx| 99这里都是精品| 国产成人在线免费观看| 蜜臀av性久久久久av蜜臀妖精| 亚洲欧美日韩在线播放| 国产精品入口麻豆九色| 久久精品网站免费观看| 欧美一级片免费看| 欧美日韩国产高清一区二区 | 国产精品污网站| 欧美一区二区三区影视| 成人网在线免费视频| 亚洲第一狼人社区| 亚洲免费观看高清| 国产精品九色蝌蚪自拍| 欧美va在线播放| 欧美精选一区二区| 欧美人xxxx| 91久久精品一区二区二区| 99re在线视频这里只有精品| 成人三级在线视频| 国产传媒欧美日韩成人| 国产美女在线观看一区| 狠狠色综合日日| 老司机免费视频一区二区| 免费成人av在线| 免费久久精品视频| 免费人成网站在线观看欧美高清| 天天综合网天天综合色| 日韩主播视频在线| 另类小说图片综合网| 五月婷婷欧美视频| 天天综合天天综合色| 日本美女视频一区二区| 蜜桃91丨九色丨蝌蚪91桃色| 蜜臀久久99精品久久久久宅男| 秋霞av亚洲一区二区三| 蜜臂av日日欢夜夜爽一区| 韩国一区二区三区| 成人app软件下载大全免费| 91国产视频在线观看| 欧美精品一卡两卡| 日韩午夜av一区| 国产农村妇女毛片精品久久麻豆 | 亚洲精品日韩专区silk| 亚洲妇女屁股眼交7| 日本最新不卡在线| 国产精品1区二区.| 一本久久a久久精品亚洲| 欧美三级在线播放| 亚洲精品在线网站| 国产精品久久久久婷婷| 夜夜嗨av一区二区三区中文字幕 | 首页国产丝袜综合| 精彩视频一区二区| 91在线码无精品| 欧美一区二区三区免费在线看| 国产欧美日产一区| 亚洲夂夂婷婷色拍ww47| 国产精品一区专区| 欧美在线观看禁18| 日本一区二区视频在线观看| 亚洲激情在线播放| 国产在线乱码一区二区三区| 91免费看视频| 久久久久久久免费视频了| 亚洲一区视频在线| 国产精品中文字幕日韩精品| 91精品国产色综合久久不卡电影 | 亚洲视频在线观看三级| 奇米精品一区二区三区四区 | 亚洲第一狼人社区| 国产凹凸在线观看一区二区| 欧美日韩亚洲综合一区| 国产精品久久久久久户外露出 | 欧美日韩不卡在线| 中文字幕一区二区三区不卡在线| 免费成人小视频| 欧美性欧美巨大黑白大战| 久久精品夜夜夜夜久久| 日本中文字幕一区| 在线免费观看一区| 亚洲天天做日日做天天谢日日欢 | 成人动漫一区二区三区| 久久久www成人免费无遮挡大片| 婷婷久久综合九色综合绿巨人| 色999日韩国产欧美一区二区| 国产欧美一区在线| 国产91精品久久久久久久网曝门| 欧美tickle裸体挠脚心vk| 日韩va亚洲va欧美va久久| 在线观看91精品国产入口| 中文字幕一区av| 不卡大黄网站免费看| 国产精品美女久久久久久久网站| 国产一区二区91| 欧美videos大乳护士334| 美腿丝袜亚洲一区| 欧美一区二区视频免费观看| 免费成人在线网站| 日韩女优毛片在线| 老色鬼精品视频在线观看播放| 91.麻豆视频| 久色婷婷小香蕉久久| 久久在线观看免费| www.亚洲精品| 亚洲人成网站色在线观看| 日本高清无吗v一区| 亚洲一区二区三区四区五区黄| 在线观看精品一区| 五月婷婷综合激情| 精品嫩草影院久久| 风间由美中文字幕在线看视频国产欧美| 中文字幕免费不卡| 欧美性生活久久| 麻豆成人91精品二区三区| 国产午夜三级一区二区三| 成人手机电影网| 一二三四社区欧美黄| 欧美一区二区三区日韩视频| 国产99久久久国产精品免费看| 亚洲视频一区二区在线| 欧美一区二区不卡视频| 国产呦精品一区二区三区网站| 国产精品成人网| 欧美电影一区二区三区| 成人午夜激情在线| 亚洲国产中文字幕| 久久九九国产精品| 欧美色综合网站| 国产成人精品影院| 亚洲国产日产av| 日本一区二区三区电影| 在线观看中文字幕不卡| 国产专区综合网| 亚洲国产成人91porn| 国产视频一区在线观看 | 亚洲综合在线观看视频| 日韩欧美一级二级三级久久久| 高清视频一区二区| 丝袜亚洲精品中文字幕一区| 国产三级三级三级精品8ⅰ区| 91在线码无精品| 久久se精品一区二区| 日韩理论片一区二区| 日韩精品在线网站| 色婷婷综合中文久久一本| 国产一区二区视频在线播放| 一区二区三区产品免费精品久久75| 久久综合视频网| 日本一区中文字幕| 伊人色综合久久天天| 国产农村妇女精品| 精品国产三级电影在线观看| 青青青伊人色综合久久| 亚洲免费资源在线播放| 欧美激情一区二区三区四区| 日韩一区国产二区欧美三区| 国产精品99久久久久久久vr| 蜜臀av一级做a爰片久久| 亚洲第四色夜色| 亚洲国产婷婷综合在线精品| 欧美综合在线视频| 色综合天天综合网天天看片| 国产高清不卡一区| 国产一区二区三区免费看| 美女被吸乳得到大胸91| 奇米影视7777精品一区二区| 免费人成精品欧美精品| 日本中文字幕一区|