Python?seaborn?barplot畫圖案例

    目錄

    默認barplot

    import seaborn as snsimport matplotlib.pyplot as plt import numpy as np sns.set_theme(style="whitegrid")df = sns.load_dataset("tips")#默認畫條形圖sns.barplot(x="day",y="total_bill",data=df)plt.show()#計算平均值看是否和條形圖得高度一致print(df.groupby("day").agg({"total_bill":[np.mean]}))print(df.groupby("day").agg({"total_bill":[np.std]}))# 注意這個地方error bar顯示并不是標準差

         total_bill           meandayThur  17.682742Fri   17.151579Sat   20.441379Sun   21.410000     total_bill            stddayThur   7.886170Fri    8.302660Sat    9.480419Sun    8.832122

    使用案例

    # import librariesimport seaborn as snsimport numpy as npimport matplotlib.pyplot as plt# load datasettips = sns.load_dataset("tips")# Set the figure sizeplt.figure(figsize=(14, 8))# plot a bar chartax = sns.barplot(x="day", y="total_bill", data=tips, estimator=np.mean, ci=85, capsize=.2, color='lightblue')

    修改capsize

    ax=sns.barplot(x="day",y="total_bill",data=df,capsize=1.0)plt.show()

    顯示error bar得值

    import seaborn as snsimport matplotlib.pyplot as plt sns.set_theme(style="whitegrid")df = sns.load_dataset("tips")#默認畫條形圖ax=sns.barplot(x="day",y="total_bill",data=df)plt.show()for p in ax.lines:    width = p.get_linewidth()    xy = p.get_xydata() # 顯示error bar得值    print(xy)    print(width)    print(p)

    [[ 0.         15.85041935] [ 0.         19.64465726]]2.7Line2D(_line0)[[ 1.         13.93096053] [ 1.         21.38463158]]2.7Line2D(_line1)[[ 2.         18.57236207] [ 2.         22.40351437]]2.7Line2D(_line2)[[ 3.         19.66244737] [ 3.         23.50109868]]2.7Line2D(_line3)

    annotata error bar

    fig, ax = plt.subplots(figsize=(8, 6))sns.barplot(x='day', y='total_bill', data=df, capsize=0.2, ax=ax)# show the meanfor p in ax.patches:    h, w, x = p.get_height(), p.get_width(), p.get_x()    xy = (x + w / 2., h / 2)    text = f'Mean:n{h:0.2f}'    ax.annotate(text=text, xy=xy, ha='center', va='center')ax.set(xlabel='day', ylabel='total_bill')plt.show()

    error bar選取sd

    import seaborn as snsimport matplotlib.pyplot as plt sns.set_theme(style="whitegrid")df = sns.load_dataset("tips")#默認畫條形圖sns.barplot(x="day",y="total_bill",data=df,ci="sd",capsize=1.0)## 注意這個ci參數plt.show()print(df.groupby("day").agg({"total_bill":[np.mean]}))print(df.groupby("day").agg({"total_bill":[np.std]}))

         total_bill           meandayThur  17.682742Fri   17.151579Sat   20.441379Sun   21.410000     total_bill            stddayThur   7.886170Fri    8.302660Sat    9.480419Sun    8.832122

    設置置信區間(68)

    import seaborn as snsimport matplotlib.pyplot as plt sns.set_theme(style="whitegrid")df = sns.load_dataset("tips")#默認畫條形圖sns.barplot(x="day",y="total_bill",data=df,ci=68,capsize=1.0)## 注意這個ci參數plt.show()

    設置置信區間(95)

    import seaborn as snsimport matplotlib.pyplot as plt sns.set_theme(style="whitegrid")df = sns.load_dataset("tips")#默認畫條形圖sns.barplot(x="day",y="total_bill",data=df,ci=95)plt.show()#計算平均值看是否和條形圖得高度一致print(df.groupby("day").agg({"total_bill":[np.mean]}))

         total_bill           meandayThur  17.682742Fri   17.151579Sat   20.441379Sun   21.410000

    dataframe aggregate函數使用

    #計算平均值看是否和條形圖得高度一致df = sns.load_dataset("tips")print("="*20)print(df.groupby("day").agg({"total_bill":[np.mean]})) # 分組求均值print("="*20)print(df.groupby("day").agg({"total_bill":[np.std]})) # 分組求標準差print("="*20)print(df.groupby("day").agg({"total_bill":"nunique"})) # 這里統計得是不同得數目print("="*20)print(df.groupby("day").agg({"total_bill":"count"})) # 這里統計得是每個分組樣本得數量print("="*20)print(df["day"].value_counts())print("="*20)
    ====================     total_bill           meandayThur  17.682742Fri   17.151579Sat   20.441379Sun   21.410000====================     total_bill            stddayThur   7.886170Fri    8.302660Sat    9.480419Sun    8.832122====================      total_billdayThur          61Fri           18Sat           85Sun           76====================      total_billdayThur          62Fri           19Sat           87Sun           76====================Sat     87Sun     76Thur    62Fri     19Name: day, dtype: int64====================

    dataframe aggregate 自定義函數

    import numpy as npimport pandas as pddf = pd.DataFrame({'Buy/Sell': [1, 0, 1, 1, 0, 1, 0, 0],                   'Trader': ['A', 'A', 'B', 'B', 'B', 'C', 'C', 'C']})print(df)def categorize(x):    m = x.mean()    return 1 if m > 0.5 else 0 if m < 0.5 else np.nanresult = df.groupby(['Trader'])['Buy/Sell'].agg([categorize, 'sum', 'count'])result = result.rename(columns={'categorize' : 'Buy/Sell'})result
       Buy/Sell Trader0         1      A1         0      A2         1      B3         1      B4         0      B5         1      C6         0      C7         0      C

    dataframe aggregate 自定義函數2

    df = sns.load_dataset("tips")#默認畫條形圖def custom1(x):    m = x.mean()    s = x.std()    n = x.count()# 統計個數    #print(n)    return m+1.96*s/np.sqrt(n)def custom2(x):    m = x.mean()    s = x.std()    n = x.count()# 統計個數    #print(n)    return m+s/np.sqrt(n)sns.barplot(x="day",y="total_bill",data=df,ci=95)plt.show()print(df.groupby("day").agg({"total_bill":[np.std,custom1]})) # 分組求標準差sns.barplot(x="day",y="total_bill",data=df,ci=68)plt.show()print(df.groupby("day").agg({"total_bill":[np.std,custom2]})) #

    ?[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-pkCx72ui-1658379974318)(output_24_0.png)]

         total_bill            std    custom1dayThur   7.886170  19.645769Fri    8.302660  20.884910Sat    9.480419  22.433538Sun    8.832122  23.395703

    [外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-GFyIePmW-1658379974318)(output_24_2.png)]

         total_bill            std    custom2dayThur   7.886170  18.684287Fri    8.302660  19.056340Sat    9.480419  21.457787Sun    8.832122  22.423114

    seaborn顯示網格

    ax=sns.barplot(x="day",y="total_bill",data=df,ci=95)ax.yaxis.grid(True) # Hide the horizontal gridlinesax.xaxis.grid(True) # Show the vertical gridlines

    seaborn設置刻度

    fig, ax = plt.subplots(figsize=(10, 8))sns.barplot(x="day",y="total_bill",data=df,ci=95,ax=ax)ax.set_yticks([i for i in range(30)])ax.yaxis.grid(True) # Hide the horizontal gridlines

    使用其他estaimator

    #estimator 指定條形圖高度使用相加得和sns.barplot(x="day",y="total_bill",data=df,estimator=np.sum)plt.show()#計算想加和看是否和條形圖得高度一致print(df.groupby("day").agg({"total_bill":[np.sum]}))'''     total_bill            sumdayFri      325.88Sat     1778.40Sun     1627.16Thur    1096.33'''

    到此這篇關于Python seaborn barplot畫圖案例得內容就介紹到這了,更多相關Python seaborn barplot 內容請搜索之家以前得內容或繼續瀏覽下面得相關內容希望大家以后多多支持之家!

    聲明:所有內容來自互聯網搜索結果,不保證100%準確性,僅供參考。如若本站內容侵犯了原著者的合法權益,可聯系我們進行處理。
    發表評論
    更多 網友評論1 條評論)
    暫無評論

    返回頂部

    主站蜘蛛池模板: 亚洲欧洲∨国产一区二区三区| 一区二区三区四区视频| 欧洲精品一区二区三区| 国产怡春院无码一区二区| 免费在线视频一区| 伊人色综合视频一区二区三区| 精品国产香蕉伊思人在线在线亚洲一区二区| 中文字幕在线无码一区二区三区| 久久久久人妻精品一区三寸| 日本成人一区二区| 少妇人妻精品一区二区三区| 亚洲国产一区二区三区| 亚洲影视一区二区| 欲色aV无码一区二区人妻| 清纯唯美经典一区二区| 91亚洲一区二区在线观看不卡| 一区二区三区电影在线观看| 日本精品一区二区三区视频| 日本一区二区三区爆乳| 免费看一区二区三区四区| 中字幕一区二区三区乱码 | 国产午夜一区二区在线观看 | 亚洲a∨无码一区二区| 中文乱码精品一区二区三区| 无人码一区二区三区视频| 精彩视频一区二区三区| 精品久久久久久无码中文字幕一区| 少妇一夜三次一区二区| 日本一区二区在线播放| 久久精品一区二区东京热| 狠狠综合久久AV一区二区三区| 亚洲欧洲∨国产一区二区三区| 久久一区二区明星换脸| 久久精品一区二区三区日韩| 麻豆AV一区二区三区久久 | 久久er99热精品一区二区 | 四虎永久在线精品免费一区二区 | 中文乱码人妻系列一区二区| 中文字幕AV一区二区三区 | 亚洲AV综合色一区二区三区| 一区二区三区四区免费视频 |